Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Crit Care Med ; 51(5): 619-631, 2023 05 01.
Article in English | MEDLINE | ID: covidwho-2258725

ABSTRACT

OBJECTIVES: To determine the prevalence and outcomes associated with hemorrhage, disseminated intravascular coagulopathy, and thrombosis (HECTOR) complications in ICU patients with COVID-19. DESIGN: Prospective, observational study. SETTING: Two hundred twenty-nine ICUs across 32 countries. PATIENTS: Adult patients (≥ 16 yr) admitted to participating ICUs for severe COVID-19 from January 1, 2020, to December 31, 2021. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: HECTOR complications occurred in 1,732 of 11,969 study eligible patients (14%). Acute thrombosis occurred in 1,249 patients (10%), including 712 (57%) with pulmonary embolism, 413 (33%) with myocardial ischemia, 93 (7.4%) with deep vein thrombosis, and 49 (3.9%) with ischemic strokes. Hemorrhagic complications were reported in 579 patients (4.8%), including 276 (48%) with gastrointestinal hemorrhage, 83 (14%) with hemorrhagic stroke, 77 (13%) with pulmonary hemorrhage, and 68 (12%) with hemorrhage associated with extracorporeal membrane oxygenation (ECMO) cannula site. Disseminated intravascular coagulation occurred in 11 patients (0.09%). Univariate analysis showed that diabetes, cardiac and kidney diseases, and ECMO use were risk factors for HECTOR. Among survivors, ICU stay was longer (median days 19 vs 12; p < 0.001) for patients with versus without HECTOR, but the hazard of ICU mortality was similar (hazard ratio [HR] 1.01; 95% CI 0.92-1.12; p = 0.784) overall, although this hazard was identified when non-ECMO patients were considered (HR 1.13; 95% CI 1.02-1.25; p = 0.015). Hemorrhagic complications were associated with an increased hazard of ICU mortality compared to patients without HECTOR complications (HR 1.26; 95% CI 1.09-1.45; p = 0.002), whereas thrombosis complications were associated with reduced hazard (HR 0.88; 95% CI 0.79-0.99, p = 0.03). CONCLUSIONS: HECTOR events are frequent complications of severe COVID-19 in ICU patients. Patients receiving ECMO are at particular risk of hemorrhagic complications. Hemorrhagic, but not thrombotic complications, are associated with increased ICU mortality.


Subject(s)
COVID-19 , Thrombosis , Adult , Humans , COVID-19/complications , COVID-19/epidemiology , COVID-19/therapy , Prospective Studies , Critical Illness , Thrombosis/epidemiology , Thrombosis/etiology , Critical Care , Hemorrhage/epidemiology , Hemorrhage/etiology , Retrospective Studies
2.
JAMA Netw Open ; 5(10): e2238871, 2022 10 03.
Article in English | MEDLINE | ID: covidwho-2084948

ABSTRACT

Importance: Data on the association of COVID-19 vaccination with intensive care unit (ICU) admission and outcomes of patients with SARS-CoV-2-related pneumonia are scarce. Objective: To evaluate whether COVID-19 vaccination is associated with preventing ICU admission for COVID-19 pneumonia and to compare baseline characteristics and outcomes of vaccinated and unvaccinated patients admitted to an ICU. Design, Setting, and Participants: This retrospective cohort study on regional data sets reports: (1) daily number of administered vaccines and (2) data of all consecutive patients admitted to an ICU in Lombardy, Italy, from August 1 to December 15, 2021 (Delta variant predominant). Vaccinated patients received either mRNA vaccines (BNT162b2 or mRNA-1273) or adenoviral vector vaccines (ChAdOx1-S or Ad26.COV2). Incident rate ratios (IRRs) were computed from August 1, 2021, to January 31, 2022; ICU and baseline characteristics and outcomes of vaccinated and unvaccinated patients admitted to an ICU were analyzed from August 1 to December 15, 2021. Exposures: COVID-19 vaccination status (no vaccination, mRNA vaccine, adenoviral vector vaccine). Main Outcomes and Measures: The incidence IRR of ICU admission was evaluated, comparing vaccinated people with unvaccinated, adjusted for age and sex. The baseline characteristics at ICU admission of vaccinated and unvaccinated patients were investigated. The association between vaccination status at ICU admission and mortality at ICU and hospital discharge were also studied, adjusting for possible confounders. Results: Among the 10 107 674 inhabitants of Lombardy, Italy, at the time of this study, the median [IQR] age was 48 [28-64] years and 5 154 914 (51.0%) were female. Of the 7 863 417 individuals who were vaccinated (median [IQR] age: 53 [33-68] years; 4 010 343 [51.4%] female), 6 251 417 (79.5%) received an mRNA vaccine, 550 439 (7.0%) received an adenoviral vector vaccine, and 1 061 561 (13.5%) received a mix of vaccines and 4 497 875 (57.2%) were boosted. Compared with unvaccinated people, IRR of individuals who received an mRNA vaccine within 120 days from the last dose was 0.03 (95% CI, 0.03-0.04; P < .001), whereas IRR of individuals who received an adenoviral vector vaccine after 120 days was 0.21 (95% CI, 0.19-0.24; P < .001). There were 553 patients admitted to an ICU for COVID-19 pneumonia during the study period: 139 patients (25.1%) were vaccinated and 414 (74.9%) were unvaccinated. Compared with unvaccinated patients, vaccinated patients were older (median [IQR]: 72 [66-76] vs 60 [51-69] years; P < .001), primarily male individuals (110 patients [79.1%] vs 252 patients [60.9%]; P < .001), with more comorbidities (median [IQR]: 2 [1-3] vs 0 [0-1] comorbidities; P < .001) and had higher ratio of arterial partial pressure of oxygen (Pao2) and fraction of inspiratory oxygen (FiO2) at ICU admission (median [IQR]: 138 [100-180] vs 120 [90-158] mm Hg; P = .007). Factors associated with ICU and hospital mortality were higher age, premorbid heart disease, lower Pao2/FiO2 at ICU admission, and female sex (this factor only for ICU mortality). ICU and hospital mortality were similar between vaccinated and unvaccinated patients. Conclusions and Relevance: In this cohort study, mRNA and adenoviral vector vaccines were associated with significantly lower risk of ICU admission for COVID-19 pneumonia. ICU and hospital mortality were not associated with vaccinated status. These findings suggest a substantial reduction of the risk of developing COVID-19-related severe acute respiratory failure requiring ICU admission among vaccinated people.


Subject(s)
COVID-19 , Pneumonia , Humans , Male , Female , Middle Aged , Adult , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Critical Illness/therapy , COVID-19 Vaccines , Retrospective Studies , Cohort Studies , BNT162 Vaccine , Intensive Care Units , Pneumonia/epidemiology , Oxygen
3.
Int J Med Inform ; 164: 104807, 2022 08.
Article in English | MEDLINE | ID: covidwho-2076190

ABSTRACT

PURPOSE: COVID-19 disease frequently affects the lungs leading to bilateral viral pneumonia, progressing in some cases to severe respiratory failure requiring ICU admission and mechanical ventilation. Risk stratification at ICU admission is fundamental for resource allocation and decision making. We assessed performances of three machine learning approaches to predict mortality in COVID-19 patients admitted to ICU using early operative data from the Lombardy ICU Network. METHODS: This is a secondary analysis of prospectively collected data from Lombardy ICU network. A logistic regression, balanced logistic regression and random forest were built to predict survival on two datasets: dataset A included patient demographics, medications before admission and comorbidities, and dataset B included respiratory data the first day in ICU. RESULTS: Models were trained on 1484 patients on four outcomes (7/14/21/28 days) and reached the greatest predictive performance at 28 days (F1-score: 0.75 and AUC: 0.80). Age, number of comorbidities and male gender were strongly associated with mortality. On dataset B, mode of ventilatory assistance at ICU admission and fraction of inspired oxygen were associated with an increase in prediction performances. CONCLUSIONS: Machine learning techniques might be useful in emergency phases to reach good predictive performances maintaining interpretability to gain knowledge on complex situations and enhance patient management and resources.


Subject(s)
COVID-19 , COVID-19/epidemiology , Critical Illness/epidemiology , Disease Outbreaks , Humans , Intensive Care Units , Male , Retrospective Studies , SARS-CoV-2 , Supervised Machine Learning
4.
Hum Mol Genet ; 31(23): 3945-3966, 2022 11 28.
Article in English | MEDLINE | ID: covidwho-1948292

ABSTRACT

Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2/genetics , Genome-Wide Association Study , Haplotypes , Polymorphism, Genetic
5.
IEEE Open J Eng Med Biol ; 3: 41-46, 2022.
Article in English | MEDLINE | ID: covidwho-1731038

ABSTRACT

Goal: To provide a Multiple Emergency Ventilator (MEV) as backup in case of shortage of ICU ventilators and for use in camp hospitals. Methods: MEV provides the same oxygen mixture and peak inspiratory pressure (PIP) to 10 patients. These specifications were fixed: i) gas supply and plugs to double-limb intubation sets compatible to existing systems; ii) fluid-dynamics with no pressure drop and almost complete patients' uncoupling; iii) individual monitoring of inspiratory and expiratory pressures and flows and control of their timing; iv) easy stocking, transport, installation with self-supporting pipes. Results: A Bell-Jar System (BJS) design permitted to safely fix PIP based on Archimedes' law. The main distribution line was based on 2" stainless steel pipes assuring the required mechanical properties and over-dimensioned for fluidics. The Windkessel of the BJS and pipeline dead-volumes is 75.65 L and in the worst case of the instantaneous demand of 5 L by 10 patients (0.5 L each) shows an adiabatic PIP drop limited to -6.18%, confirming the needed uncoupling. Consequently, patients' asynchrony is permitted as needed by pressure-controlled volume-guaranteed and assisted-ventilation. Conclusions: Although MEV is proposed as a backup system, its features may cover the whole set of ventilation modes required by ICU ventilation.

6.
Am J Epidemiol ; 191(1): 137-146, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1621545

ABSTRACT

During the spring of 2020, the coronavirus disease 2019 (COVID-19) epidemic caused an unprecedented demand for intensive-care resources in the Lombardy region of Italy. Using data on 43,538 hospitalized patients admitted between February 21 and July 12, 2020, we evaluated variations in intensive care unit (ICU) admissions and mortality over the course of 3 periods: the early phase of the pandemic (February 21-March 13), the period of highest pressure on the health-care system (March 14-April 25, when numbers of COVID-19 patients exceeded prepandemic ICU bed capacity), and the declining phase (April 26-July 12). Compared with the early phase, patients aged 70 years or more were less often admitted to an ICU during the period of highest pressure on the health-care system (odds ratio (OR) = 0.47, 95% confidence interval (CI): 0.41, 0.54), with longer ICU delays (incidence rate ratio = 1.82, 95% CI: 1.52, 2.18) and lower chances of dying in the ICU (OR = 0.47, 95% CI: 0.34, 0.64). Patients under 56 years of age had more limited changes in the probability of (OR = 0.65, 95% CI: 0.56, 0.76) and delay to (incidence rate ratio = 1.16, 95% CI: 0.95, 1.42) ICU admission and increased mortality (OR = 1.43, 95% CI: 1.00, 2.07). In the declining phase, all quantities decreased for all age groups. These patterns may suggest that limited health-care resources during the peak phase of the epidemic in Lombardy forced a shift in ICU admission criteria to prioritize patients with higher chances of survival.


Subject(s)
COVID-19/epidemiology , COVID-19/therapy , Delivery of Health Care/statistics & numerical data , Intensive Care Units/statistics & numerical data , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/mortality , Comorbidity , Humans , Italy/epidemiology , Middle Aged , Pandemics , Retrospective Studies , Risk Factors , SARS-CoV-2 , Sex Factors , Time Factors
7.
JAMA ; 323(16): 1574-1581, 2020 04 28.
Article in English | MEDLINE | ID: covidwho-1453471

ABSTRACT

Importance: In December 2019, a novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) emerged in China and has spread globally, creating a pandemic. Information about the clinical characteristics of infected patients who require intensive care is limited. Objective: To characterize patients with coronavirus disease 2019 (COVID-19) requiring treatment in an intensive care unit (ICU) in the Lombardy region of Italy. Design, Setting, and Participants: Retrospective case series of 1591 consecutive patients with laboratory-confirmed COVID-19 referred for ICU admission to the coordinator center (Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy) of the COVID-19 Lombardy ICU Network and treated at one of the ICUs of the 72 hospitals in this network between February 20 and March 18, 2020. Date of final follow-up was March 25, 2020. Exposures: SARS-CoV-2 infection confirmed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay of nasal and pharyngeal swabs. Main Outcomes and Measures: Demographic and clinical data were collected, including data on clinical management, respiratory failure, and patient mortality. Data were recorded by the coordinator center on an electronic worksheet during telephone calls by the staff of the COVID-19 Lombardy ICU Network. Results: Of the 1591 patients included in the study, the median (IQR) age was 63 (56-70) years and 1304 (82%) were male. Of the 1043 patients with available data, 709 (68%) had at least 1 comorbidity and 509 (49%) had hypertension. Among 1300 patients with available respiratory support data, 1287 (99% [95% CI, 98%-99%]) needed respiratory support, including 1150 (88% [95% CI, 87%-90%]) who received mechanical ventilation and 137 (11% [95% CI, 9%-12%]) who received noninvasive ventilation. The median positive end-expiratory pressure (PEEP) was 14 (IQR, 12-16) cm H2O, and Fio2 was greater than 50% in 89% of patients. The median Pao2/Fio2 was 160 (IQR, 114-220). The median PEEP level was not different between younger patients (n = 503 aged ≤63 years) and older patients (n = 514 aged ≥64 years) (14 [IQR, 12-15] vs 14 [IQR, 12-16] cm H2O, respectively; median difference, 0 [95% CI, 0-0]; P = .94). Median Fio2 was lower in younger patients: 60% (IQR, 50%-80%) vs 70% (IQR, 50%-80%) (median difference, -10% [95% CI, -14% to 6%]; P = .006), and median Pao2/Fio2 was higher in younger patients: 163.5 (IQR, 120-230) vs 156 (IQR, 110-205) (median difference, 7 [95% CI, -8 to 22]; P = .02). Patients with hypertension (n = 509) were older than those without hypertension (n = 526) (median [IQR] age, 66 years [60-72] vs 62 years [54-68]; P < .001) and had lower Pao2/Fio2 (median [IQR], 146 [105-214] vs 173 [120-222]; median difference, -27 [95% CI, -42 to -12]; P = .005). Among the 1581 patients with ICU disposition data available as of March 25, 2020, 920 patients (58% [95% CI, 56%-61%]) were still in the ICU, 256 (16% [95% CI, 14%-18%]) were discharged from the ICU, and 405 (26% [95% CI, 23%-28%]) had died in the ICU. Older patients (n = 786; age ≥64 years) had higher mortality than younger patients (n = 795; age ≤63 years) (36% vs 15%; difference, 21% [95% CI, 17%-26%]; P < .001). Conclusions and Relevance: In this case series of critically ill patients with laboratory-confirmed COVID-19 admitted to ICUs in Lombardy, Italy, the majority were older men, a large proportion required mechanical ventilation and high levels of PEEP, and ICU mortality was 26%.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Critical Care/statistics & numerical data , Hospital Mortality , Intensive Care Units/statistics & numerical data , Pneumonia, Viral/epidemiology , Positive-Pressure Respiration/statistics & numerical data , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , COVID-19 , Comorbidity , Coronavirus Infections/mortality , Coronavirus Infections/physiopathology , Coronavirus Infections/therapy , Critical Illness/therapy , Female , Hospitalization , Humans , Italy/epidemiology , Male , Middle Aged , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/physiopathology , Pneumonia, Viral/therapy , Respiration, Artificial , Retrospective Studies , SARS-CoV-2 , Sex Distribution , Young Adult
8.
J Anesth Analg Crit Care ; 1(1): 3, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1388853

ABSTRACT

BACKGROUND: Since the beginning of coronavirus disease 2019 (COVID-19), the development of predictive models has sparked relevant interest due to the initial lack of knowledge about diagnosis, treatment, and prognosis. The present study aimed at developing a model, through a machine learning approach, to predict intensive care unit (ICU) mortality in COVID-19 patients based on predefined clinical parameters. RESULTS: Observational multicenter cohort study. All COVID-19 adult patients admitted to 25 ICUs belonging to the VENETO ICU network (February 28th 2020-april 4th 2021) were enrolled. Patients admitted to the ICUs before 4th March 2021 were used for model training ("training set"), while patients admitted after the 5th of March 2021 were used for external validation ("test set 1"). A further group of patients ("test set 2"), admitted to the ICU of IRCCS Ca' Granda Ospedale Maggiore Policlinico of Milan, was used for external validation. A SuperLearner machine learning algorithm was applied for model development, and both internal and external validation was performed. Clinical variables available for the model were (i) age, gender, sequential organ failure assessment score, Charlson Comorbidity Index score (not adjusted for age), Palliative Performance Score; (ii) need of invasive mechanical ventilation, non-invasive mechanical ventilation, O2 therapy, vasoactive agents, extracorporeal membrane oxygenation, continuous venous-venous hemofiltration, tracheostomy, re-intubation, prone position during ICU stay; and (iii) re-admission in ICU. One thousand two hundred ninety-three (80%) patients were included in the "training set", while 124 (8%) and 199 (12%) patients were included in the "test set 1" and "test set 2," respectively. Three different predictive models were developed. Each model included different sets of clinical variables. The three models showed similar predictive performances, with a training balanced accuracy that ranged between 0.72 and 0.90, while the cross-validation performance ranged from 0.75 to 0.85. Age was the leading predictor for all the considered models. CONCLUSIONS: Our study provides a useful and reliable tool, through a machine learning approach, for predicting ICU mortality in COVID-19 patients. In all the estimated models, age was the variable showing the most important impact on mortality.

9.
Intensive Care Med ; 47(9): 995-1008, 2021 09.
Article in English | MEDLINE | ID: covidwho-1349283

ABSTRACT

PURPOSE: To evaluate the daily values and trends over time of relevant clinical, ventilatory and laboratory parameters during the intensive care unit (ICU) stay and their association with outcome in critically ill patients with coronavirus disease 19 (COVID-19). METHODS: In this retrospective-prospective multicentric study, we enrolled COVID-19 patients admitted to Italian ICUs from February 22 to May 31, 2020. Clinical data were daily recorded. The time course of 18 clinical parameters was evaluated by a polynomial maximum likelihood multilevel linear regression model, while a full joint modeling was fit to study the association with ICU outcome. RESULTS: 1260 consecutive critically ill patients with COVID-19 admitted in 24 ICUs were enrolled. 78% were male with a median age of 63 [55-69] years. At ICU admission, the median ratio of arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2) was 122 [89-175] mmHg. 79% of patients underwent invasive mechanical ventilation. The overall mortality was 34%. Both the daily values and trends of respiratory system compliance, PaO2/FiO2, driving pressure, arterial carbon dioxide partial pressure, creatinine, C-reactive protein, ferritin, neutrophil, neutrophil-lymphocyte ratio, and platelets were associated with survival, while for lactate, pH, bilirubin, lymphocyte, and urea only the daily values were associated with survival. The trends of PaO2/FiO2, respiratory system compliance, driving pressure, creatinine, ferritin, and C-reactive protein showed a higher association with survival compared to the daily values. CONCLUSION: Daily values or trends over time of parameters associated with acute organ dysfunction, acid-base derangement, coagulation impairment, or systemic inflammation were associated with patient survival.


Subject(s)
COVID-19 , Critical Illness , Aged , Humans , Intensive Care Units , Italy , Male , Middle Aged , Prospective Studies , Respiration, Artificial , Retrospective Studies , Risk Factors , SARS-CoV-2
10.
Membranes (Basel) ; 11(7)2021 Jul 20.
Article in English | MEDLINE | ID: covidwho-1323302

ABSTRACT

During the COVID-19 pandemic, a shortage of mechanical ventilators was reported and ventilator sharing between patients was proposed as an ultimate solution. Two lung simulators were ventilated by one anesthesia machine connected through two respiratory circuits and T-pieces. Five different combinations of compliances (30-50 mL × cmH2O-1) and resistances (5-20 cmH2O × L-1 × s-1) were tested. The ventilation setting was: pressure-controlled ventilation, positive end-expiratory pressure 15 cmH2O, inspiratory pressure 10 cmH2O, respiratory rate 20 bpm. Pressures and flows from all the circuit sections have been recorded and analyzed. Simulated patients with equal compliance and resistance received similar ventilation. Compliance reduction from 50 to 30 mL × cmH2O-1 decreased the tidal volume (VT) by 32% (418 ± 49 vs. 285 ± 17 mL). The resistance increase from 5 to 20 cmH2O × L-1 × s-1 decreased VT by 22% (425 ± 69 vs. 331 ± 51 mL). The maximal alveolar pressure was lower at higher compliance and resistance values and decreased linearly with the time constant (r² = 0.80, p < 0.001). The minimum alveolar pressure ranged from 15.5 ± 0.04 to 16.57 ± 0.04 cmH2O. Cross-flows between the simulated patients have been recorded in all the tested combinations, during both the inspiratory and expiratory phases. The simultaneous ventilation of two patients with one ventilator may be unable to match individual patient's needs and has a high risk of cross-interference.

11.
JMIR Form Res ; 5(5): e25713, 2021 May 31.
Article in English | MEDLINE | ID: covidwho-1249616

ABSTRACT

BACKGROUND: Italy was the first country to largely experience the COVID-19 epidemic among other Western countries during the so-called first wave of the COVID-19 pandemic. Proper management of an increasing number of home-quarantined individuals created a significant challenge for health care authorities and professionals. This was especially true when considering the importance of remote surveillance to detect signs of disease progression and consequently regulate access to hospitals and intensive care units on a priority basis. OBJECTIVE: In this paper, we report on an initiative promoted to cope with the first wave of the COVID-19 epidemic in the Spring/Summer of 2020, in the Autonomous Province of Trento, Italy. A purposefully built app named TreCovid19 was designed to provide dedicated health care staff with a ready-to-use tool for remotely monitoring patients with progressive symptoms of COVID-19, who were home-quarantined during the first wave of the epidemic, and to focus on those patients who, based on their self-reported clinical data, required a quick response from health care professionals. METHODS: TreCovid19 was rapidly developed to facilitate the monitoring of a selected number of home-quarantined patients with COVID-19 during the very first epidemic wave. The app was built on top of an existing eHealth platform, already in use by the local health authority to provide home care, with the following functionalities: (1) to securely collect and link demographic and clinical information related to the patients and (2) to provide a two-way communication between a multidisciplinary health care team and home-quarantined patients. The system supported patients to self-assess their condition and update the multidisciplinary team on their health status. The system was used between March and June 2020 in the province of Trento. RESULTS: A dedicated multidisciplinary group of health care professionals adopted the platform over a period of approximately 3 months (from March-end to June 2020) to monitor a total of 170 patients with confirmed COVID-19 during home quarantine. All patients used the system until the end of the initiative. The TreCovid19 system has provided useful insights of possible viability and impact of a technological-organizational asset to manage a potentially critical workload for the health care staff involved in the periodic monitoring of a relevant number of quarantined patients, notwithstanding its limitations given the rapid implementation of the whole initiative. CONCLUSIONS: The technological and organizational model adopted in response to the COVID-19 pandemic was developed and finalized in a relatively short period during the initial few weeks of the epidemic. The system successfully supported the health care staff involved in the periodic monitoring of an increasing number of home-quarantined patients and provided valuable data in terms of disease surveillance.

12.
Crit Care ; 25(1): 115, 2021 03 20.
Article in English | MEDLINE | ID: covidwho-1143244

ABSTRACT

BACKGROUND: The mortality of critically ill patients with COVID-19 is high, particularly among those receiving mechanical ventilation (MV). Despite the high number of patients treated worldwide, data on respiratory mechanics are currently scarce and the optimal setting of MV remains to be defined. This scoping review aims to provide an overview of available data about respiratory mechanics, gas exchange and MV settings in patients admitted to intensive care units (ICUs) for COVID-19-associated acute respiratory failure, and to identify knowledge gaps. MAIN TEXT: PubMed, EMBASE, and MEDLINE databases were searched from inception to October 30, 2020 for studies providing at least one ventilatory parameter collected within 24 h from the ICU admission. The quality of the studies was independently assessed using the Newcastle-Ottawa Quality Assessment Form for Cohort Studies. A total of 26 studies were included for a total of 14,075 patients. At ICU admission, positive end expiratory pressure (PEEP) values ranged from 9 to 16.5 cm of water (cmH2O), suggesting that high levels of PEEP were commonly used for setting MV for these patients. Patients with COVID-19 are severely hypoxemic at ICU admission and show a median ratio of partial pressure of arterial oxygen to fraction of inspired oxygen (PaO2/FiO2) ranging from 102 to 198 mmHg. Static respiratory system compliance (Crs) values at ICU admission were highly heterogenous, ranging between 24 and 49 ml/cmH2O. Prone positioning and neuromuscular blocking agents were widely used, ranging from 17 to 81 and 22 to 88%, respectively; both rates were higher than previously reported in patients with "classical" acute respiratory distress syndrome (ARDS). CONCLUSIONS: Available data show that, in mechanically ventilated patients with COVID-19, respiratory mechanics and MV settings within 24 h from ICU admission are heterogeneous but similar to those reported for "classical" ARDS. However, to date, complete data regarding mechanical properties of respiratory system, optimal setting of MV and the role of rescue treatments for refractory hypoxemia are still lacking in the medical literature.


Subject(s)
COVID-19/physiopathology , COVID-19/therapy , Respiration, Artificial , COVID-19/complications , Critical Illness , Humans , Intensive Care Units , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/virology , Respiratory Mechanics
13.
Clin Nutr ; 41(12): 3096-3099, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1116486

ABSTRACT

BACKGROUND & AIMS: The aim of this study was to evaluate the nutritional support management in mechanically ventilated coronavirus disease 2019 (COVID-19) patients and explore the association between early caloric deficit and mortality, taking possible confounders (i.e. obesity) into consideration. METHODS: This was a prospective study carried out during the first pandemic wave in the intensive care units (ICUs) of two referral University Hospitals in Lombardy, Italy. Two hundred twenty-two consecutive mechanically ventilated COVID-19 patients were evaluated during the ICU stay. In addition to major demographic and clinical data, we recorded information on the route and amount of nutritional support provided on a daily basis. RESULTS: Among patients still in the ICUs and alive on day 4 (N = 198), 129 (65.2%) and 72 (36.4%) reached a satisfactory caloric and protein intake, respectively, mainly by enteral route. In multivariable analysis, a satisfactory caloric intake on day 4 was associated with lower mortality (HR = 0.46 [95%CI, 0.42-0.50], P < 0.001). Mild obesity (body mass index [BMI] ≥30 and < 35 kg/m2) was associated with higher mortality (HR = 1.99 [95%CI, 1.07-3.68], P = 0.029), while patients with moderate-severe obesity (BMI≥35 kg/m2) were less likely to be weaned from invasive mechanical ventilation (HR = 0.71 [95%CI, 0.62-0.82], P < 0.001). CONCLUSIONS: This study confirmed the negative prognostic and clinical role of obesity in mechanically ventilated COVID-19 patients and suggested that early caloric deficit may independently contribute to worsen survival in this patients' population. Therefore, any effort should be made to implement an adequate timely nutritional support in all COVID-19 patients during the ICU stay.


Subject(s)
COVID-19 , Critical Illness , Humans , COVID-19/epidemiology , COVID-19/therapy , Prospective Studies , Intensive Care Units , Respiration, Artificial , Obesity/epidemiology , Obesity/therapy
14.
Curr Opin Crit Care ; 27(1): 13-19, 2021 02 01.
Article in English | MEDLINE | ID: covidwho-1087840

ABSTRACT

PURPOSE OF REVIEW: The recent COVID-19 outbreak has clearly shown how epidemics/pandemics can challenge developed countries' healthcare systems. Proper management of equipment and human resources is critical to provide adequate medical care to all patients admitted to the hospital and the ICU for both pandemic-related and unrelated reasons. RECENT FINDINGS: Appropriate separate paths for infected and noninfected patients and prompt isolation of infected critical patients in dedicated ICUs play a pivotal role in limiting the contagions and optimizing resources during pandemics. The key to handle these challenging events is to learn from past experiences and to be prepared for future occurrences. Hospital space should be redesigned to quickly increase medical and critical care capacity, and healthcare workers (critical and noncritical) should be trained in advance. SUMMARY: A targeted improvement of hospital and ICU protocols will increase medical care quality for patients admitted to the hospital for any clinical reasons during a pandemic.


Subject(s)
COVID-19 , Civil Defense , Intensive Care Units , Pandemics , Critical Care , Humans , SARS-CoV-2
15.
JAMA Intern Med ; 180(10): 1345-1355, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-1042172

ABSTRACT

Importance: Many patients with coronavirus disease 2019 (COVID-19) are critically ill and require care in the intensive care unit (ICU). Objective: To evaluate the independent risk factors associated with mortality of patients with COVID-19 requiring treatment in ICUs in the Lombardy region of Italy. Design, Setting, and Participants: This retrospective, observational cohort study included 3988 consecutive critically ill patients with laboratory-confirmed COVID-19 referred for ICU admission to the coordinating center (Fondazione IRCCS [Istituto di Ricovero e Cura a Carattere Scientifico] Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy) of the COVID-19 Lombardy ICU Network from February 20 to April 22, 2020. Infection with severe acute respiratory syndrome coronavirus 2 was confirmed by real-time reverse transcriptase-polymerase chain reaction assay of nasopharyngeal swabs. Follow-up was completed on May 30, 2020. Exposures: Baseline characteristics, comorbidities, long-term medications, and ventilatory support at ICU admission. Main Outcomes and Measures: Time to death in days from ICU admission to hospital discharge. The independent risk factors associated with mortality were evaluated with a multivariable Cox proportional hazards regression. Results: Of the 3988 patients included in this cohort study, the median age was 63 (interquartile range [IQR] 56-69) years; 3188 (79.9%; 95% CI, 78.7%-81.1%) were men, and 1998 of 3300 (60.5%; 95% CI, 58.9%-62.2%) had at least 1 comorbidity. At ICU admission, 2929 patients (87.3%; 95% CI, 86.1%-88.4%) required invasive mechanical ventilation (IMV). The median follow-up was 44 (95% CI, 40-47; IQR, 11-69; range, 0-100) days; median time from symptoms onset to ICU admission was 10 (95% CI, 9-10; IQR, 6-14) days; median length of ICU stay was 12 (95% CI, 12-13; IQR, 6-21) days; and median length of IMV was 10 (95% CI, 10-11; IQR, 6-17) days. Cumulative observation time was 164 305 patient-days. Hospital and ICU mortality rates were 12 (95% CI, 11-12) and 27 (95% CI, 26-29) per 1000 patients-days, respectively. In the subgroup of the first 1715 patients, as of May 30, 2020, 865 (50.4%) had been discharged from the ICU, 836 (48.7%) had died in the ICU, and 14 (0.8%) were still in the ICU; overall, 915 patients (53.4%) died in the hospital. Independent risk factors associated with mortality included older age (hazard ratio [HR], 1.75; 95% CI, 1.60-1.92), male sex (HR, 1.57; 95% CI, 1.31-1.88), high fraction of inspired oxygen (Fio2) (HR, 1.14; 95% CI, 1.10-1.19), high positive end-expiratory pressure (HR, 1.04; 95% CI, 1.01-1.06) or low Pao2:Fio2 ratio (HR, 0.80; 95% CI, 0.74-0.87) on ICU admission, and history of chronic obstructive pulmonary disease (HR, 1.68; 95% CI, 1.28-2.19), hypercholesterolemia (HR, 1.25; 95% CI, 1.02-1.52), and type 2 diabetes (HR, 1.18; 95% CI, 1.01-1.39). No medication was independently associated with mortality (angiotensin-converting enzyme inhibitors HR, 1.17; 95% CI, 0.97-1.42; angiotensin receptor blockers HR, 1.05; 95% CI, 0.85-1.29). Conclusions and Relevance: In this retrospective cohort study of critically ill patients admitted to ICUs in Lombardy, Italy, with laboratory-confirmed COVID-19, most patients required IMV. The mortality rate and absolute mortality were high.


Subject(s)
Coronavirus Infections , Critical Illness , Hospitalization/statistics & numerical data , Intensive Care Units/statistics & numerical data , Pandemics , Pneumonia, Viral , Respiration, Artificial/statistics & numerical data , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques/methods , Clinical Laboratory Techniques/statistics & numerical data , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Coronavirus Infections/therapy , Critical Illness/mortality , Critical Illness/therapy , Female , Hospital Mortality , Humans , Italy/epidemiology , Male , Middle Aged , Mortality , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , Retrospective Studies , Risk Factors , SARS-CoV-2
16.
Ann Intensive Care ; 10(1): 133, 2020 Oct 12.
Article in English | MEDLINE | ID: covidwho-846400

ABSTRACT

BACKGROUND: A Covid-19 outbreak developed in Lombardy, Veneto and Emilia-Romagna (Italy) at the end of February 2020. Fear of an imminent saturation of available ICU beds generated the notion that rationing of intensive care resources could have been necessary. RESULTS: In order to evaluate the impact of Covid-19 on the ICU capacity to manage critically ill patients, we performed a retrospective analysis of the first 2 weeks of the outbreak (February 24-March 8). Data were collected from regional registries and from a case report form sent to participating sites. ICU beds increased from 1545 to 1989 (28.7%), and patients receiving respiratory support outside the ICU increased from 4 (0.6%) to 260 (37.0%). Patients receiving respiratory support outside the ICU were significantly older [65 vs. 77 years], had more cerebrovascular (5.8 vs. 13.1%) and renal (5.3 vs. 10.0%) comorbidities and less obesity (31.4 vs. 15.5%) than patients admitted to the ICU. PaO2/FiO2 ratio, respiratory rate and arterial pH were higher [165 vs. 244; 20 vs. 24 breath/min; 7.40 vs. 7.46] and PaCO2 and base excess were lower [34 vs. 42 mmHg; 0.60 vs. 1.30] in patients receiving respiratory support outside the ICU than in patients admitted to the ICU, respectively. CONCLUSIONS: Increase in ICU beds and use of out-of-ICU respiratory support allowed effective management of the first 14 days of the Covid-19 outbreak, avoiding resource rationing.

17.
Lancet Respir Med ; 8(12): 1201-1208, 2020 12.
Article in English | MEDLINE | ID: covidwho-731950

ABSTRACT

BACKGROUND: Patients with COVID-19 can develop acute respiratory distress syndrome (ARDS), which is associated with high mortality. The aim of this study was to examine the functional and morphological features of COVID-19-associated ARDS and to compare these with the characteristics of ARDS unrelated to COVID-19. METHODS: This prospective observational study was done at seven hospitals in Italy. We enrolled consecutive, mechanically ventilated patients with laboratory-confirmed COVID-19 and who met Berlin criteria for ARDS, who were admitted to the intensive care unit (ICU) between March 9 and March 22, 2020. All patients were sedated, paralysed, and ventilated in volume-control mode with standard ICU ventilators. Static respiratory system compliance, the ratio of partial pressure of arterial oxygen to fractional concentration of oxygen in inspired air, ventilatory ratio (a surrogate of dead space), and D-dimer concentrations were measured within 24 h of ICU admission. Lung CT scans and CT angiograms were done when clinically indicated. A dataset for ARDS unrelated to COVID-19 was created from previous ARDS studies. Survival to day 28 was assessed. FINDINGS: Between March 9 and March 22, 2020, 301 patients with COVID-19 met the Berlin criteria for ARDS at participating hospitals. Median static compliance was 41 mL/cm H2O (33-52), which was 28% higher than in the cohort of patients with ARDS unrelated to COVID-19 (32 mL/cm H2O [25-43]; p<0·0001). 17 (6%) of 297 patients with COVID-19-associated ARDS had compliances greater than the 95th percentile of the classical ARDS cohort. Total lung weight did not differ between the two cohorts. CT pulmonary angiograms (obtained in 23 [8%] patients with COVID-19-related ARDS) showed that 15 (94%) of 16 patients with D-dimer concentrations greater than the median had bilateral areas of hypoperfusion, consistent with thromboembolic disease. Patients with D-dimer concentrations equal to or less than the median had ventilatory ratios lower than those of patients with D-dimer concentrations greater than the median (1·66 [1·32-1·95] vs 1·90 [1·50-2·33]; p=0·0001). Patients with static compliance equal to or less than the median and D-dimer concentrations greater than the median had markedly increased 28-day mortality compared with other patient subgroups (40 [56%] of 71 with high D-dimers and low compliance vs 18 [27%] of 67 with low D-dimers and high compliance, 13 [22%] of 60 with low D-dimers and low compliance, and 22 [35%] of 63 with high D-dimers and high compliance, all p=0·0001). INTERPRETATION: Patients with COVID-19-associated ARDS have a form of injury that, in many aspects, is similar to that of those with ARDS unrelated to COVID-19. Notably, patients with COVID-19-related ARDS who have a reduction in respiratory system compliance together with increased D-dimer concentrations have high mortality rates. FUNDING: None.


Subject(s)
COVID-19/physiopathology , Respiratory Distress Syndrome/physiopathology , Aged , COVID-19/mortality , Computed Tomography Angiography , Female , Fibrin Fibrinogen Degradation Products/metabolism , Humans , Lung/diagnostic imaging , Lung/pathology , Male , Middle Aged , Pandemics , Prospective Studies , Respiration, Artificial , Respiratory Distress Syndrome/mortality , SARS-CoV-2
18.
N Engl J Med ; 383(16): 1522-1534, 2020 10 15.
Article in English | MEDLINE | ID: covidwho-606974

ABSTRACT

BACKGROUND: There is considerable variation in disease behavior among patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (Covid-19). Genomewide association analysis may allow for the identification of potential genetic factors involved in the development of Covid-19. METHODS: We conducted a genomewide association study involving 1980 patients with Covid-19 and severe disease (defined as respiratory failure) at seven hospitals in the Italian and Spanish epicenters of the SARS-CoV-2 pandemic in Europe. After quality control and the exclusion of population outliers, 835 patients and 1255 control participants from Italy and 775 patients and 950 control participants from Spain were included in the final analysis. In total, we analyzed 8,582,968 single-nucleotide polymorphisms and conducted a meta-analysis of the two case-control panels. RESULTS: We detected cross-replicating associations with rs11385942 at locus 3p21.31 and with rs657152 at locus 9q34.2, which were significant at the genomewide level (P<5×10-8) in the meta-analysis of the two case-control panels (odds ratio, 1.77; 95% confidence interval [CI], 1.48 to 2.11; P = 1.15×10-10; and odds ratio, 1.32; 95% CI, 1.20 to 1.47; P = 4.95×10-8, respectively). At locus 3p21.31, the association signal spanned the genes SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6 and XCR1. The association signal at locus 9q34.2 coincided with the ABO blood group locus; in this cohort, a blood-group-specific analysis showed a higher risk in blood group A than in other blood groups (odds ratio, 1.45; 95% CI, 1.20 to 1.75; P = 1.48×10-4) and a protective effect in blood group O as compared with other blood groups (odds ratio, 0.65; 95% CI, 0.53 to 0.79; P = 1.06×10-5). CONCLUSIONS: We identified a 3p21.31 gene cluster as a genetic susceptibility locus in patients with Covid-19 with respiratory failure and confirmed a potential involvement of the ABO blood-group system. (Funded by Stein Erik Hagen and others.).


Subject(s)
ABO Blood-Group System/genetics , Betacoronavirus , Chromosomes, Human, Pair 3/genetics , Coronavirus Infections/genetics , Genetic Predisposition to Disease , Pneumonia, Viral/genetics , Polymorphism, Single Nucleotide , Respiratory Insufficiency/genetics , Aged , COVID-19 , Case-Control Studies , Chromosomes, Human, Pair 9/genetics , Coronavirus Infections/complications , Female , Genetic Loci , Genome-Wide Association Study , Humans , Italy , Male , Middle Aged , Multigene Family , Pandemics , Pneumonia, Viral/complications , Respiratory Insufficiency/etiology , SARS-CoV-2 , Spain
SELECTION OF CITATIONS
SEARCH DETAIL